Price Range Prediction 🎯
Price Range Prediction represents the most sophisticated and skill-intensive game mode in CoinDrafts, leveraging Linera's advanced oracle capabilities and consensus mechanisms to create a prediction market where precision and market analysis expertise are rewarded exponentially.
Core Prediction Mechanics​
Fundamental Parameters​
- Duration: 7 days (prediction window)
- Challenge Type: Exact price range forecasting
- Entry Fee: $1 USDC (with dynamic multipliers up to 20x)
- Validation: Multi-source oracle consensus
- Rewards: Exponential scaling based on accuracy and difficulty
- Skills Required: Technical analysis, market sentiment, fundamental analysis
Prediction Architecture​
Implementation Architecture​
Prediction Market Chain Structure​
use linera_sdk::{
base::{AccountOwner, Timestamp, Amount, ChainId},
views::{LogView, MapView, RegisterView, RootView, ViewStorageContext},
Contract, Service,
};
#[derive(RootView)]
#[view(context = ViewStorageContext)]
pub struct PredictionMarketChain {
/// Market configuration and target cryptocurrency
pub market_config: RegisterView<PredictionMarketConfig>,
/// All player predictions with detailed analysis
pub predictions: MapView<AccountOwner, PriceRangePrediction>,
/// Confidence pools for meta-gaming opportunities
pub confidence_pools: MapView<PriceRange, ConfidencePool>,
/// AI-generated market analysis and insights
pub ai_insights: RegisterView<AIMarketAnalysis>,
/// Multi-source price validation system
pub price_validators: MapView<OracleSource, PriceValidation>,
/// Dynamic difficulty metrics and rewards
pub difficulty_metrics: RegisterView<DifficultyMetrics>,
/// Historical prediction accuracy tracking
pub accuracy_history: LogView<PredictionAccuracyRecord>,
/// Market sentiment and external factor analysis
pub sentiment_data: RegisterView<MarketSentimentAnalysis>,
/// Secondary betting on predictions
pub meta_betting: MapView<PredictionID, MetaBettingPool>,
}
#[derive(Debug, Clone, Serialize, Deserialize, async_graphql::SimpleObject)]
pub struct PriceRangePrediction {
pub prediction_id: String,
pub player: AccountOwner,
pub target_crypto: String,
pub predicted_range: PriceRange,
pub confidence_level: f64,
pub reasoning: DetailedAnalysis,
pub stake_multiplier: f64,
pub submission_time: Timestamp,
pub ai_assistance_used: AIAssistanceLevel,
pub market_conditions_at_submission: MarketSnapshot,
pub technical_analysis: Option<TechnicalAnalysisData>,
pub fundamental_analysis: Option<FundamentalAnalysisData>,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct PriceRange {
pub min_price: Amount,
pub max_price: Amount,
pub range_width: Amount,
pub difficulty_score: f64,
pub confidence_interval: f64, // Statistical confidence level
pub time_decay_factor: f64, // Decreases as prediction ages
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct DetailedAnalysis {
pub primary_reasoning: String,
pub supporting_factors: Vec<String>,
pub risk_factors: Vec<String>,
pub market_catalysts: Vec<MarketCatalyst>,
pub technical_indicators: Vec<TechnicalIndicator>,
pub sentiment_analysis: SentimentAnalysis,
pub comparable_patterns: Vec<HistoricalPattern>,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ConfidencePool {
pub range: PriceRange,
pub total_confidence_stake: Amount,
pub participant_count: u32,
pub average_confidence: f64,
pub confidence_distribution: HashMap<ConfidenceLevel, u32>,
pub meta_bets: Vec<MetaBet>, // Other players betting on this prediction's success
pub ai_consensus: Option<AIConfidenceAssessment>,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum AIAssistanceLevel {
None, // No AI assistance used
Basic, // Basic market data and trends
Advanced, // Technical analysis assistance
Comprehensive, // Full AI analysis suite
AIGenerated, // Completely AI-generated prediction
}
Advanced Oracle Validation System​
impl PredictionMarketContract {
/// Multi-source price validation with consensus mechanism
async fn validate_final_price(
&mut self,
target_crypto: String,
prediction_end_time: Timestamp,
) -> Result<ValidationResult, ContractError> {
// Query all available price sources simultaneously
let oracle_queries = vec![
self.query_primary_oracle(&target_crypto, prediction_end_time),
self.query_coingecko_api(&target_crypto, prediction_end_time),
self.query_binance_api(&target_crypto, prediction_end_time),
self.query_coinbase_api(&target_crypto, prediction_end_time),
self.query_kraken_api(&target_crypto, prediction_end_time),
self.query_chainlink_feed(&target_crypto, prediction_end_time),
self.query_band_protocol(&target_crypto, prediction_end_time),
];
// Execute all queries in parallel with timeout
let query_results = futures::try_join_all(oracle_queries).await?;
// Filter out failed queries and outliers
let valid_prices = self.filter_valid_prices(query_results)?;
if valid_prices.len() < 3 {
return Ok(ValidationResult::InsufficientData {
sources_available: valid_prices.len(),
minimum_required: 3,
retry_after: Duration::hours(1),
});
}
// Apply advanced consensus algorithm
let consensus_result = self.calculate_advanced_consensus(&valid_prices)?;
// Validate consensus quality
let quality_assessment = self.assess_consensus_quality(&valid_prices, &consensus_result);
if quality_assessment.confidence < 0.95 {
return Ok(ValidationResult::RequiresExtendedValidation {
current_consensus: consensus_result,
confidence: quality_assessment.confidence,
outlier_count: quality_assessment.outliers.len(),
retry_after: Duration::minutes(30),
});
}
// Store validation result for transparency
let validation_record = PriceValidationRecord {
crypto: target_crypto,
timestamp: prediction_end_time,
consensus_price: consensus_result,
sources_used: valid_prices.len(),
confidence: quality_assessment.confidence,
validation_method: ConsensusMethod::WeightedMedian,
outliers_excluded: quality_assessment.outliers,
};
self.accuracy_history.push(PredictionAccuracyRecord {
validation: validation_record.clone(),
predictions_validated: self.predictions.len(),
timestamp: self.runtime.current_timestamp(),
});
Ok(ValidationResult::Validated {
final_price: consensus_result,
validation_record,
})
}
/// Advanced consensus algorithm with outlier detection
fn calculate_advanced_consensus(
&self,
valid_prices: &[PriceSource],
) -> Result<Amount, ContractError> {
// Sort prices for median calculation
let mut prices: Vec<Amount> = valid_prices.iter().map(|source| source.price).collect();
prices.sort();
// Calculate various consensus metrics
let median = self.calculate_median(&prices);
let mean = self.calculate_weighted_mean(valid_prices);
let trimmed_mean = self.calculate_trimmed_mean(&prices, 0.1); // Remove 10% outliers
// Weight different methods based on source reliability
let source_reliability_weights = self.calculate_source_reliability_weights(valid_prices);
let reliability_weighted_mean = self.calculate_reliability_weighted_mean(
valid_prices,
&source_reliability_weights
);
// Combine methods with preference for stability
let consensus_components = vec![
(median, 0.4), // 40% weight to median (stable)
(reliability_weighted_mean, 0.3), // 30% weight to reliability-weighted
(trimmed_mean, 0.2), // 20% weight to trimmed mean
(mean, 0.1), // 10% weight to simple mean
];
let weighted_consensus = consensus_components
.iter()
.map(|(price, weight)| price.multiply_by_float(*weight))
.fold(Amount::zero(), |acc, price| acc.add(price));
Ok(weighted_consensus)
}
/// Query CoinGecko API with retry logic and rate limiting
async fn query_coingecko_api(
&self,
crypto: &str,
timestamp: Timestamp,
) -> Result<PriceSource, OracleError> {
let coingecko_id = self.get_coingecko_id(crypto)?;
// Convert timestamp to CoinGecko format
let date_str = timestamp.to_date_string(); // Format: "dd-mm-yyyy"
let url = format!(
"https://api.coingecko.com/api/v3/coins/{}/history?date={}&localization=false",
coingecko_id, date_str
);
// Implement retry logic with exponential backoff
let mut retry_count = 0;
const MAX_RETRIES: u32 = 3;
while retry_count < MAX_RETRIES {
match self.runtime.http_query(&url).await {
Ok(response) => {
let price_data: CoinGeckoHistoricalResponse = serde_json::from_str(&response)?;
return Ok(PriceSource {
source: "coingecko".to_string(),
price: Amount::from_str(&price_data.market_data.current_price.usd.to_string())?,
timestamp,
confidence: 0.95,
reliability_score: self.get_source_reliability("coingecko"),
api_response_time: self.measure_response_time().await?,
});
}
Err(e) => {
retry_count += 1;
if retry_count < MAX_RETRIES {
// Exponential backoff
let delay = Duration::seconds(2_u64.pow(retry_count));
self.runtime.sleep(delay).await?;
} else {
return Err(OracleError::APIQueryFailed {
source: "coingecko".to_string(),
error: e.to_string(),
retries_attempted: retry_count,
});
}
}
}
}
Err(OracleError::MaxRetriesExceeded)
}
/// Query Chainlink price feed with fallback mechanisms
async fn query_chainlink_feed(
&self,
crypto: &str,
timestamp: Timestamp,
) -> Result<PriceSource, OracleError> {
let feed_address = self.get_chainlink_feed_address(crypto)?;
// Query historical price from Chainlink
let price_result = self.runtime.call_contract(
feed_address,
"getRoundData",
vec![timestamp.to_round_id()],
).await?;
let (round_id, price, started_at, updated_at, answered_in_round) = price_result;
// Validate timestamp proximity
let time_diff = timestamp.duration_since(Timestamp::from_nanoseconds_since_epoch(updated_at));
if time_diff > Duration::hours(1) {
return Err(OracleError::TimestampMismatch {
requested: timestamp,
available: Timestamp::from_nanoseconds_since_epoch(updated_at),
difference: time_diff,
});
}
Ok(PriceSource {
source: "chainlink".to_string(),
price: Amount::from_u64(price),
timestamp: Timestamp::from_nanoseconds_since_epoch(updated_at),
confidence: 0.98, // Chainlink is highly reliable
reliability_score: self.get_source_reliability("chainlink"),
api_response_time: Duration::milliseconds(50), // On-chain calls are fast
})
}
}
Dynamic Difficulty & Reward System​
Exponential Reward Scaling​
impl PredictionMarketContract {
/// Calculate prediction multiplier based on difficulty and accuracy
async fn calculate_prediction_multiplier(
&self,
prediction: &PriceRangePrediction,
actual_price: Amount,
) -> Result<f64, ContractError> {
// Base multiplier from range difficulty (smaller range = higher reward)
let range_width = prediction.predicted_range.range_width.as_u64();
let target_price = prediction.predicted_range.min_price.add(
prediction.predicted_range.range_width.divide_by_int(2)
); // Midpoint of predicted range
let range_difficulty_multiplier = match range_width {
0..=50 => 20.0, // $50 range = 20x (extremely difficult)
51..=100 => 15.0, // $100 range = 15x (very difficult)
101..=250 => 10.0, // $250 range = 10x (difficult)
251..=500 => 5.0, // $500 range = 5x (moderate)
501..=1000 => 2.5, // $1000 range = 2.5x (easy)
1001..=2000 => 1.5, // $2000 range = 1.5x (very easy)
_ => 1.0, // >$2000 range = 1x (too easy)
};
// Accuracy bonus (exponential scaling for precision)
let accuracy_bonus = self.calculate_accuracy_bonus(prediction, actual_price).await?;
// Confidence level multiplier
let confidence_multiplier = 1.0 + (prediction.confidence_level * 0.5);
// Market volatility adjustment (higher volatility = higher rewards)
let volatility_multiplier = self.calculate_volatility_multiplier(
&prediction.target_crypto,
prediction.submission_time
).await?;
// AI assistance penalty
let ai_penalty = match prediction.ai_assistance_used {
AIAssistanceLevel::None => 1.0,
AIAssistanceLevel::Basic => 0.9,
AIAssistanceLevel::Advanced => 0.8,
AIAssistanceLevel::Comprehensive => 0.7,
AIAssistanceLevel::AIGenerated => 0.5,
};
// Time decay bonus (earlier predictions get bonus)
let time_bonus = self.calculate_time_submission_bonus(prediction.submission_time);
// Market condition difficulty bonus
let market_difficulty_bonus = self.calculate_market_difficulty_bonus(
&prediction.market_conditions_at_submission
);
// Calculate final multiplier
let final_multiplier = range_difficulty_multiplier
* accuracy_bonus
* confidence_multiplier
* volatility_multiplier
* ai_penalty
* time_bonus
* market_difficulty_bonus;
// Cap maximum multiplier to prevent extreme payouts
Ok(final_multiplier.min(100.0))
}
/// Calculate accuracy bonus with exponential scaling
async fn calculate_accuracy_bonus(
&self,
prediction: &PriceRangePrediction,
actual_price: Amount,
) -> Result<f64, ContractError> {
let min_price = prediction.predicted_range.min_price;
let max_price = prediction.predicted_range.max_price;
// Check if prediction was accurate (within range)
if actual_price >= min_price && actual_price <= max_price {
// Perfect prediction - within range
let range_center = min_price.add(max_price).divide_by_int(2);
let distance_from_center = if actual_price > range_center {
actual_price.subtract(range_center)
} else {
range_center.subtract(actual_price)
};
let range_radius = max_price.subtract(min_price).divide_by_int(2);
let accuracy_ratio = 1.0 - (distance_from_center.as_f64() / range_radius.as_f64());
// Exponential scaling for precision within range
let accuracy_bonus = 1.0 + (accuracy_ratio * accuracy_ratio * 5.0); // Up to 6x for perfect center
Ok(accuracy_bonus)
} else {
// Prediction was wrong - no bonus, but check how close
let distance_from_range = if actual_price < min_price {
min_price.subtract(actual_price)
} else {
actual_price.subtract(max_price)
};
let range_width = max_price.subtract(min_price);
let miss_ratio = distance_from_range.as_f64() / range_width.as_f64();
// Partial credit for near misses (up to 20% of range width)
if miss_ratio <= 0.2 {
let partial_credit = 0.5 * (1.0 - miss_ratio * 5.0); // Linear decay to 0
Ok(partial_credit.max(0.1)) // Minimum 0.1x for close attempts
} else {
Ok(0.0) // No bonus for predictions far from actual price
}
}
}
/// Calculate market volatility multiplier
async fn calculate_volatility_multiplier(
&self,
crypto: &str,
submission_time: Timestamp,
) -> Result<f64, ContractError> {
// Get historical volatility at time of prediction
let volatility_data = self.get_historical_volatility(crypto, submission_time).await?;
// Higher volatility = higher difficulty = higher multiplier
let volatility_multiplier = match volatility_data.seven_day_volatility {
vol if vol > 0.50 => 3.0, // >50% volatility = 3x
vol if vol > 0.30 => 2.0, // >30% volatility = 2x
vol if vol > 0.20 => 1.5, // >20% volatility = 1.5x
vol if vol > 0.10 => 1.2, // >10% volatility = 1.2x
_ => 1.0, // Low volatility = 1x
};
Ok(volatility_multiplier)
}
/// Calculate time submission bonus (early submissions get rewarded)
fn calculate_time_submission_bonus(&self, submission_time: Timestamp) -> f64 {
let market_config = self.market_config.get();
let prediction_window = market_config.end_time.duration_since(market_config.start_time);
let time_until_end = market_config.end_time.duration_since(submission_time);
let time_remaining_ratio = time_until_end.as_secs_f64() / prediction_window.as_secs_f64();
// Bonus for early submissions
match time_remaining_ratio {
ratio if ratio > 0.8 => 1.3, // Submitted in first 20% = 1.3x bonus
ratio if ratio > 0.6 => 1.2, // Submitted in first 40% = 1.2x bonus
ratio if ratio > 0.4 => 1.1, // Submitted in first 60% = 1.1x bonus
_ => 1.0, // Late submissions = no bonus
}
}
}
AI-Powered Market Analysis​
Comprehensive Analysis Engine​
#[derive(RootView)]
#[view(context = ViewStorageContext)]
pub struct AIMarketAnalysisChain {
/// Real-time market data aggregation
pub market_data: MapView<String, RealTimeMarketData>,
/// Technical analysis models and indicators
pub technical_models: MapView<String, TechnicalAnalysisModel>,
/// Fundamental analysis scoring
pub fundamental_scores: MapView<String, FundamentalAnalysisScore>,
/// Sentiment analysis from multiple sources
pub sentiment_analysis: MapView<String, SentimentAnalysisData>,
/// Machine learning prediction models
pub ml_models: MapView<String, MLPredictionModel>,
/// Historical pattern recognition
pub pattern_library: LogView<HistoricalPattern>,
/// Market correlation analysis
pub correlation_matrix: RegisterView<MarketCorrelationMatrix>,
}
impl AIMarketAnalysisContract {
/// Generate comprehensive market analysis for prediction assistance
async fn generate_comprehensive_analysis(
&mut self,
crypto: String,
prediction_timeframe: Duration,
) -> Result<ComprehensiveMarketAnalysis, ContractError> {
// Parallel data gathering from multiple sources
let (
market_data,
technical_analysis,
fundamental_analysis,
sentiment_data,
on_chain_metrics,
derivatives_data,
macro_economic_data,
) = futures::try_join!(
self.gather_real_time_market_data(&crypto),
self.perform_technical_analysis(&crypto, prediction_timeframe),
self.analyze_fundamental_factors(&crypto),
self.analyze_market_sentiment(&crypto),
self.analyze_on_chain_metrics(&crypto),
self.analyze_derivatives_markets(&crypto),
self.gather_macro_economic_indicators()
)?;
// Advanced machine learning prediction
let ml_prediction = self.run_ml_prediction_ensemble(
&market_data,
&technical_analysis,
&fundamental_analysis,
&sentiment_data,
&on_chain_metrics,
prediction_timeframe,
).await?;
// Pattern recognition analysis
let similar_patterns = self.find_similar_historical_patterns(
&market_data,
&technical_analysis,
prediction_timeframe,
).await?;
// Risk assessment
let risk_analysis = self.calculate_comprehensive_risk_assessment(
&market_data,
&technical_analysis,
&derivatives_data,
¯o_economic_data,
).await?;
// Generate price range suggestions
let suggested_ranges = self.generate_ai_range_suggestions(
&ml_prediction,
&similar_patterns,
&risk_analysis,
).await?;
Ok(ComprehensiveMarketAnalysis {
crypto,
analysis_timestamp: self.runtime.current_timestamp(),
prediction_timeframe,
market_data,
technical_analysis,
fundamental_analysis,
sentiment_data,
on_chain_metrics,
ml_prediction,
similar_patterns,
risk_analysis,
suggested_ranges,
confidence_score: self.calculate_overall_confidence(&ml_prediction, &similar_patterns),
key_factors: self.identify_key_factors(&technical_analysis, &fundamental_analysis),
warnings: self.generate_risk_warnings(&risk_analysis),
})
}
/// Advanced technical analysis with multiple indicators
async fn perform_technical_analysis(
&self,
crypto: &str,
timeframe: Duration,
) -> Result<TechnicalAnalysisData, ContractError> {
// Get comprehensive price history
let price_history = self.get_price_history(crypto, Duration::days(365)).await?;
// Calculate multiple technical indicators
let indicators = TechnicalIndicators {
// Trend indicators
sma_20: self.calculate_sma(&price_history, 20),
sma_50: self.calculate_sma(&price_history, 50),
sma_200: self.calculate_sma(&price_history, 200),
ema_12: self.calculate_ema(&price_history, 12),
ema_26: self.calculate_ema(&price_history, 26),
// Momentum indicators
rsi: self.calculate_rsi(&price_history, 14),
macd: self.calculate_macd(&price_history),
stochastic: self.calculate_stochastic(&price_history, 14),
// Volatility indicators
bollinger_bands: self.calculate_bollinger_bands(&price_history, 20, 2.0),
atr: self.calculate_atr(&price_history, 14),
// Volume indicators
obv: self.calculate_obv(&price_history),
volume_sma: self.calculate_volume_sma(&price_history, 20),
// Support and resistance
support_levels: self.identify_support_levels(&price_history),
resistance_levels: self.identify_resistance_levels(&price_history),
// Pattern recognition
chart_patterns: self.identify_chart_patterns(&price_history),
candlestick_patterns: self.identify_candlestick_patterns(&price_history),
};
// Analyze indicator convergence/divergence
let signal_analysis = self.analyze_indicator_signals(&indicators);
// Generate technical forecast
let technical_forecast = self.generate_technical_forecast(
&indicators,
&signal_analysis,
timeframe,
);
Ok(TechnicalAnalysisData {
indicators,
signal_analysis,
technical_forecast,
overall_trend: self.determine_overall_trend(&indicators),
strength: self.calculate_trend_strength(&indicators),
reliability_score: self.calculate_technical_reliability(&signal_analysis),
})
}
/// Fundamental analysis with comprehensive metrics
async fn analyze_fundamental_factors(&self, crypto: &str) -> Result<FundamentalAnalysisScore, ContractError> {
// Gather fundamental data from multiple sources
let fundamental_data = FundamentalData {
// Network metrics
active_addresses: self.get_active_addresses(crypto).await?,
transaction_volume: self.get_transaction_volume(crypto).await?,
hash_rate: self.get_hash_rate(crypto).await?,
network_value_to_transactions: self.calculate_nvt_ratio(crypto).await?,
// Token economics
circulating_supply: self.get_circulating_supply(crypto).await?,
total_supply: self.get_total_supply(crypto).await?,
inflation_rate: self.calculate_inflation_rate(crypto).await?,
token_velocity: self.calculate_token_velocity(crypto).await?,
// Development activity
github_commits: self.get_github_activity(crypto).await?,
developer_count: self.get_developer_count(crypto).await?,
// Adoption metrics
exchange_listings: self.get_exchange_listings(crypto).await?,
partnership_announcements: self.get_partnerships(crypto).await?,
institutional_adoption: self.get_institutional_holdings(crypto).await?,
// Financial metrics
market_cap: self.get_market_cap(crypto).await?,
trading_volume_24h: self.get_24h_volume(crypto).await?,
liquidity_metrics: self.calculate_liquidity_metrics(crypto).await?,
};
// Calculate comprehensive fundamental score
let fundamental_score = self.calculate_fundamental_score(&fundamental_data);
Ok(FundamentalAnalysisScore {
overall_score: fundamental_score,
category_scores: self.calculate_category_scores(&fundamental_data),
strengths: self.identify_fundamental_strengths(&fundamental_data),
weaknesses: self.identify_fundamental_weaknesses(&fundamental_data),
outlook: self.generate_fundamental_outlook(&fundamental_data),
data: fundamental_data,
})
}
/// Multi-source sentiment analysis
async fn analyze_market_sentiment(&self, crypto: &str) -> Result<SentimentAnalysisData, ContractError> {
// Gather sentiment data from multiple sources
let (
social_sentiment,
news_sentiment,
options_sentiment,
funding_rates,
fear_greed_index,
) = futures::try_join!(
self.analyze_social_media_sentiment(crypto),
self.analyze_news_sentiment(crypto),
self.analyze_options_sentiment(crypto),
self.get_funding_rates(crypto),
self.get_fear_greed_index()
)?;
// Combine sentiment signals
let combined_sentiment = self.combine_sentiment_signals(
&social_sentiment,
&news_sentiment,
&options_sentiment,
&funding_rates,
&fear_greed_index,
);
Ok(SentimentAnalysisData {
overall_sentiment: combined_sentiment,
social_sentiment,
news_sentiment,
options_sentiment,
funding_rates,
fear_greed_index,
sentiment_trend: self.calculate_sentiment_trend(crypto).await?,
contrarian_signals: self.identify_contrarian_signals(&combined_sentiment),
})
}
}
Confidence Pools & Meta-Gaming​
Secondary Prediction Markets​
impl PredictionMarketContract {
/// Create confidence pools for meta-gaming opportunities
async fn create_confidence_pools(
&mut self,
prediction: &PriceRangePrediction,
) -> Result<(), ContractError> {
let range_key = prediction.predicted_range.clone();
// Create or update confidence pool for this prediction range
let mut pool = self.confidence_pools.get(&range_key).unwrap_or_default();
// Add the main prediction to the pool
pool.add_primary_prediction(
prediction.player,
prediction.confidence_level,
prediction.stake_multiplier,
prediction.reasoning.clone(),
);
// Enable meta-betting on this prediction's success
pool.open_for_meta_betting(Duration::days(5)); // Allow betting until 2 days before end
// AI confidence assessment
let ai_assessment = self.generate_ai_confidence_assessment(prediction).await?;
pool.ai_consensus = Some(ai_assessment);
self.confidence_pools.insert(&range_key, pool).await?;
// Publish event for potential meta-bettors
self.runtime.publish_event(PredictionEvent::ConfidencePoolCreated {
prediction_id: prediction.prediction_id.clone(),
range: prediction.predicted_range.clone(),
confidence: prediction.confidence_level,
ai_assessment: pool.ai_consensus.clone(),
meta_betting_deadline: self.runtime.current_timestamp() + Duration::days(5),
}).await?;
Ok(())
}
/// Allow other players to bet on prediction success (meta-gaming)
async fn place_meta_bet(
&mut self,
meta_bettor: AccountOwner,
prediction_id: String,
bet_amount: Amount,
bet_type: MetaBetType,
) -> Result<(), ContractError> {
// Validate meta-bettor is not the original predictor
let prediction = self.predictions.values()
.find(|p| p.prediction_id == prediction_id)
.ok_or(ContractError::PredictionNotFound)?;
if prediction.player == meta_bettor {
return Err(ContractError::CannotBetOnOwnPrediction);
}
// Find the confidence pool
let mut pool = self.confidence_pools.get(&prediction.predicted_range)
.ok_or(ContractError::ConfidencePoolNotFound)?;
// Validate betting is still open
if self.runtime.current_timestamp() > pool.meta_betting_deadline {
return Err(ContractError::MetaBettingClosed);
}
// Transfer bet amount to contract
self.runtime.transfer_from(meta_bettor, bet_amount).await?;
// Create meta bet
let meta_bet = MetaBet {
bettor: meta_bettor,
amount: bet_amount,
bet_type,
timestamp: self.runtime.current_timestamp(),
odds: self.calculate_meta_bet_odds(&pool, &bet_type),
};
// Add to meta betting pool
pool.meta_bets.push(meta_bet.clone());
pool.total_meta_betting_amount = pool.total_meta_betting_amount.add(bet_amount);
self.confidence_pools.insert(&prediction.predicted_range, pool).await?;
// Notify meta-bettor
self.runtime.send_message(
meta_bettor,
PlayerMessage::MetaBetPlaced {
prediction_id,
bet_amount,
bet_type,
potential_payout: self.calculate_potential_meta_payout(&meta_bet),
}
).await?;
Ok(())
}
/// Calculate dynamic odds for meta-betting
fn calculate_meta_bet_odds(&self, pool: &ConfidencePool, bet_type: &MetaBetType) -> f64 {
match bet_type {
MetaBetType::WillSucceed => {
// Odds based on confidence level and AI assessment
let base_odds = 1.0 / pool.average_confidence.max(0.1);
let ai_adjustment = if let Some(ai_consensus) = &pool.ai_consensus {
1.0 / ai_consensus.success_probability.max(0.1)
} else {
1.0
};
// Combine with market sentiment
let market_adjustment = self.get_market_sentiment_adjustment();
(base_odds * ai_adjustment * market_adjustment).max(1.1).min(10.0)
}
MetaBetType::WillFail => {
// Inverse of success odds
let success_odds = self.calculate_meta_bet_odds(pool, &MetaBetType::WillSucceed);
(1.0 / (1.0 - (1.0 / success_odds))).max(1.1).min(10.0)
}
MetaBetType::WillBeClose => {
// Betting that prediction will be close but not exact
2.5 // Fixed odds for close misses
}
}
}
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum MetaBetType {
WillSucceed, // Bet that the prediction will be accurate
WillFail, // Bet that the prediction will be wrong
WillBeClose, // Bet that prediction will be close but not exact
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct MetaBet {
pub bettor: AccountOwner,
pub amount: Amount,
pub bet_type: MetaBetType,
pub timestamp: Timestamp,
pub odds: f64,
}
Prize Distribution & Validation​
Final Settlement Process​
impl PredictionMarketContract {
/// Settle all predictions and distribute prizes
async fn settle_prediction_market(&mut self) -> Result<SettlementResult, ContractError> {
let market_config = self.market_config.get();
// Validate final price with multi-oracle consensus
let validation_result = self.validate_final_price(
market_config.target_crypto.clone(),
market_config.end_time,
).await?;
let final_price = match validation_result {
ValidationResult::Validated { final_price, .. } => final_price,
ValidationResult::RequiresExtendedValidation { .. } => {
// Extend settlement period and retry
return Ok(SettlementResult::DelayedSettlement {
reason: "Awaiting additional price validation".to_string(),
retry_after: Duration::hours(1),
});
}
ValidationResult::InsufficientData { .. } => {
return Err(ContractError::InsufficientPriceData);
}
};
// Evaluate all predictions
let mut prediction_results = Vec::new();
let mut total_payout = Amount::zero();
for (player, prediction) in self.predictions.iter() {
let result = self.evaluate_prediction(prediction, final_price).await?;
if result.is_successful {
// Calculate payout with multipliers
let multiplier = self.calculate_prediction_multiplier(prediction, final_price).await?;
let base_payout = market_config.entry_fee;
let final_payout = base_payout.multiply_by_float(multiplier);
// Transfer prize to player
self.runtime.transfer(*player, final_payout).await?;
total_payout = total_payout.add(final_payout);
// Update player's personal chain
self.runtime.send_message(
*player,
PlayerMessage::PredictionSuccess {
prediction_id: prediction.prediction_id.clone(),
accuracy: result.accuracy_score,
multiplier,
payout: final_payout,
final_price,
}
).await?;
prediction_results.push(PredictionResult {
player: *player,
prediction: prediction.clone(),
result: result.clone(),
payout: Some(final_payout),
multiplier,
});
} else {
// Unsuccessful prediction - no payout but store result
self.runtime.send_message(
*player,
PlayerMessage::PredictionFailure {
prediction_id: prediction.prediction_id.clone(),
final_price,
predicted_range: prediction.predicted_range.clone(),
miss_distance: result.miss_distance,
}
).await?;
prediction_results.push(PredictionResult {
player: *player,
prediction: prediction.clone(),
result: result.clone(),
payout: None,
multiplier: 0.0,
});
}
}
// Settle meta-betting pools
let meta_betting_results = self.settle_meta_betting_pools(final_price).await?;
// Update global statistics
self.update_global_prediction_statistics(&prediction_results).await?;
// Publish settlement event
self.runtime.publish_event(PredictionEvent::MarketSettled {
target_crypto: market_config.target_crypto,
final_price,
total_predictions: prediction_results.len(),
successful_predictions: prediction_results.iter().filter(|r| r.result.is_successful).count(),
total_payouts: total_payout,
highest_multiplier: prediction_results.iter()
.map(|r| r.multiplier)
.fold(0.0, f64::max),
}).await?;
Ok(SettlementResult::Completed {
final_price,
prediction_results,
meta_betting_results,
total_payouts: total_payout,
})
}
/// Settle all meta-betting pools
async fn settle_meta_betting_pools(
&mut self,
final_price: Amount,
) -> Result<Vec<MetaBettingResult>, ContractError> {
let mut meta_results = Vec::new();
for (range, pool) in self.confidence_pools.iter() {
// Determine if the primary prediction was successful
let prediction_successful = final_price >= range.min_price && final_price <= range.max_price;
// Distribute meta-betting payouts
for meta_bet in &pool.meta_bets {
let won_bet = match meta_bet.bet_type {
MetaBetType::WillSucceed => prediction_successful,
MetaBetType::WillFail => !prediction_successful,
MetaBetType::WillBeClose => {
// Check if price was close (within 20% of range width)
let range_width = range.max_price.subtract(range.min_price);
let threshold = range_width.multiply_by_float(0.2);
if prediction_successful {
false // Can't be "close" if it was exactly right
} else {
let distance = if final_price < range.min_price {
range.min_price.subtract(final_price)
} else {
final_price.subtract(range.max_price)
};
distance <= threshold
}
}
};
if won_bet {
let payout = meta_bet.amount.multiply_by_float(meta_bet.odds);
self.runtime.transfer(meta_bet.bettor, payout).await?;
meta_results.push(MetaBettingResult {
bettor: meta_bet.bettor,
bet_amount: meta_bet.amount,
payout: Some(payout),
bet_type: meta_bet.bet_type.clone(),
won: true,
});
} else {
meta_results.push(MetaBettingResult {
bettor: meta_bet.bettor,
bet_amount: meta_bet.amount,
payout: None,
bet_type: meta_bet.bet_type.clone(),
won: false,
});
}
}
}
Ok(meta_results)
}
}
Price Range Prediction represents the pinnacle of skill-based cryptocurrency gaming, where market expertise, analytical ability, and intuition converge in a sophisticated prediction market. By leveraging Linera's advanced oracle capabilities, consensus mechanisms, and real-time processing, it creates an environment where the most skilled market analysts can earn substantial rewards proportional to their precision and courage.
The exponential reward scaling, multi-source validation, and meta-gaming opportunities create a rich ecosystem that rewards both primary prediction skills and secondary market analysis abilities. This game mode transforms cryptocurrency price prediction from simple speculation into a sophisticated skill-based competition.
Where precision meets profit, powered by Linera's oracle revolution 🎯💎